

SDMX meets Data Commons (at W UNDATA)

Context

- Response to UN Secretary-General's Data Strategy
- Informed by the Roadmap for Innovating UN Data and Statistics
- Endorsed by UN Secretary-General's Executive Committee

Overall objectives

- Increase visibility and access to authoritative sources of statistical data and metadata
- Improve search and analytic capabilities for policy and decision makers
- Enable interoperability of statistical data from across the UN system, Member States and other partner organizations
- Enhance data value through meaningful interlinkages across global, regional and national data portals

Working principles

- Harness the UN's authority, credibility, and name recognition to unify efforts and collaborate across all stages of the data life cycle
- Ensure trust in data through data quality and adherence to standards
- Develop capacity of all stakeholders to both contribute and use a common, modern data infrastructure

Building on existing standards, infrastructure and communities of practice

- Collaborate with domain experts in data modeling and integration tasks to validate transformations and mappings
- Use .Stat Core as dimensional data repository, leveraging SDMX standards
- Deploy .Stat Core and associated tools on UN Global Platform infrastructure
- Engagement with SIS-CC community to build capacity to manage data lifecycles within the .Stat core

Towards a distributed UNdata Knowledge Graph

The objective is to capture the concepts and relationships required to:

- Establish explicit and implicit links to external resources, thus making data more easily findable, searchable, and usable.
- Build applications that efficiently access related data across multiple domains using linked open data techniques
- Generate insights by reasoning over complex relationships.
- Incrementally add new data and evolve the data schema to accommodate new data types and new use cases.

SDG Summit, 18-19 September 2023

- Launch of a first version of the UN Data Commons, focused on SDG data
 - Powerful data visualizations
 - Advanced Natural Language search functionality making it easy for users to access, explore, and utilize the data

https://unstats.un.org/UNSDWebsite/undatacommons/sdgs/

Next iteration: Towards the 2024 Session of the UN Statistical Commission

- Fully incorporate dataset from "pilot agencies", creating new thematic and data provider landing pages
- Provide partner agencies with tools to streamline their data integration workflows
- Enable multi-lingualism

UN Data Commons data architecture

Underlying framework to organize, integrate, and manage data within the UN Data Commons platform

Objective

Integrate datasets from multiple, heterogeneous sources, by converting them to a common "UNdata" schema, and ingest them into the Data Commons Knowledge Graph (based on schema.org)

Statistical Data

- Aggregated
- Dimensional data model
 - Dimensions
 - Attributes
 - Measurements
- Key dimensions (always present):
 - Indicator
 - Geography
 - Time
- Examples of other dimensions: Sex, Age, ...
- Key attributes (always present):
 - Unit of measurement,
- Example of attributes: Footnotes...

Indicator	Geography	Time Period	Sex	Value	Unit of Measure	Footnote
Life expectancy	Ghana	2022	Total		Percent	lorem ipsum
Life expectancy	Ghana	2022	Male		Percent	lorem ipsum
Life expectancy	Ghana	2022	Female		Percent	lorem ipsum
Life expectancy	Vietnam	2022	Total		Percent	lorem ipsum
Life expectancy	Vietnam	2022	Male		Percent	lorem ipsum
Life expectancy	Vietnam	2022	Female		Percent	lorem ipsum
Life expectancy	Argentina	2022	Total		Percent	lorem ipsum

Concept schemas

Enumerations

Sex_Code	Sex_Label
T	Total
F	Female
M	Male

Geography_Code	Geography_Label
G00000020	Afghanistan
କ୍ର୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦୦	Albania
<i>କ</i> ୦୦୦୦୦୦୦୦	Algeria
6,00000210	Bahamas
600000380	Brazil

Data integration problem

- A significant part of the work is in aligning terms used to refer to the same or overlapping concepts across different datasets.
- Equivalent concepts (entities) are assigned different identifiers in different databases or vocabularies
- Different communities use different names for the same real-world entities
- Mapping rules are often hidden or not documented at all
 - Describe the correspondences between classification schemes
 - Tracking how classification items have been created, split, merged, or removed from active use

Mappings between source entities and UNdata entities

Geography_Code	Geography_Label		Ref_Area	Ref_Area_Desc
G00000020	Afghanistan	• •	4	Afghanistan
6,00000050	Albania	aa	8	Albania
<i>କ</i> ୦୦୦୦୦୦୦୦	Algeria	é e	12	Algeria
6,00000210	Bahamas	•-•	44	Bahamas
600000380	Brazil	•••	76	Brazil

Data pipelines Stage 1:

Source converted to "Proto SDMX"

Data pipelines Stage 2:

Data Commons Schema

- The underlying data model for Data Commons is based on Schema.org.
- It models the world as a collection of entities, each having attributes and relationships with other entities.
- These entities fall under a taxonomy of types, and each entity is an instance of one or more types in this taxonomy.
- The conceptual foundation of the data model lies in knowledge representation systems commonly known as a "knowledge graphs"
- APIs like Node and SPARQL, as well as the Data Commons Graph Browser, provide access to the graph view.

Key features of Data Commons:

- Standard schemas and APIs allow to seamlessly integrate data from different sources, saving users from having to merge, clean, and standardize data by themselves
- Versatile Tool Suite available to any site publishing data using these schemas and APIs
- Collaborative ecosystem of interlinked instances that are built on open principles.
- A tool or application designed for one Data Commons is compatible with all, benefiting areas like visualization, analytics, machine learning, and natural language interfaces.

Data Commons Schema

- The model captures the following elements of a data point:
 - Entity: The object or thing being measured \rightarrow Place
 - Variable: The specific measurement being taken
 - **Observation**: The value of the variable for a given entity
 - **Provenance**: The source of the data

Data Commons model for statistical variables

DC

Data Commons model Female for statistical variables Sex Enumeration sex Statistical StatVar -populationType SDG Series -memberOf Variable PeerGroup constraintProperties measuredProperty Property sex value

Contrast between SDMX Information Model and Data Commons schema

- Specifically designed for statistical data, with a more tabular, dimensional focus.
- More rigid but specific, focusing on dimensions, attributes, and measures.
- Uses StructureMaps and ComponentMaps to describe how data should be transformed or related.
- Better suited for statistical data where dimensions and measures are predefined.

- Based on the Schema.org model, with roots in knowledge representation systems.
- Aims for a more flexible, verbose base layer, allowing various kinds of relationships and attributes
- Provides different APIs (Node, SPARQL, DCGET) for various views, including a time-series view.
- Built as a knowledge graph, making it more suitable for capturing a wide range of relationships among diverse entities

Data Commons model for statistical variables

SDMX Series	SDMX slice definition	population type	statistical variable	constraint property	sex	member of
SI_POV_DAY1	SEX="M"	SDG_SI_POV_DAY1	<u>sdg/SI_POV_DAY1.SEXM</u>	<u>Sex</u>	<u>Male</u>	<pre>dc/g/SDGSIPOVDAY1_sdgsex</pre>
SI_POV_DAY1	SEX="F"	<u>SDG_SI_POV_DAY1</u>	<u>sdg/SI_POV_DAY1.SEXF</u>	<u>Sex</u>	<u>Female</u>	<pre>dc/g/SDGSIPOVDAY1_sdgsex</pre>
SI_POV_DAY1	SEX="_T"	SDG_SI_POV_DAY1	<u>sdg/SI_POV_DAY1</u>			<u>dc/g/SDGSIPOVDAY1</u>
Туре:		<u>SDG_Series</u>	<u>StatisticalVariable</u>	<u>Property</u>		<u>StatVarGroup</u>

Data Commons for the SDGs

- 2023.Q3.G.01 data refresh (currently on the UNSD site)
- 2,172,161 StatVarObservations
- 3,807 StatisticalVariables
- 268,453 time series
- 6,467 geographies

Data Commons for the SDGs

- UN SDMX \rightarrow Data Commons MCF
- Each observation corresponds to one StatVarObservation
 - Associated with a specific StatisticalVariable, Place, and Date
- Each **SDG series** corresponds to 1+ **StatisticalVariables**
- Each **dimension** corresponds to one **Property**
 - Attached to the StatVarObservation or the StatisticalVariable (Properties help further specify StatVarObservations and StatisticalVariables)

UN SDMX → Data Commons MCF

SERIES_CODE, SERIES_DESCRIPTION, VARIABLE_CODE, VARIABLE _DESCRIPTION, VARIABLE_ACTIVE_DIMS, GEOGRAPHY_CODE, GE OGRAPHY_NAME, GEOGRAPHY_TYPE, GEO_AREA_CODE, GEO_A REA_NAME, CITIES, SAMPLING_STATIONS, IS_LATEST_PERIOD, TIM E_PERIOD, TIME_DETAIL, TIME_COVERAGE, FREQ, FOOD_WASTE_S ECTOR, OBS_VALUE, VALUE_TYPE, UPPER_BOUND, LOWER_BOU ND, UNIT_MEASURE, UNIT_MULT, BASE_PERIOD, NATURE, SOURCE , GEO_INFO_URL, FOOT_NOTE, REPORTING_TYPE, OBS_STATUS, R ELEASE_STATUS, RELEASE_NAME

AG_FOOD_WST, Food waste

(Tonnes), AG_FOOD_WST@FOOD_WASTE_SECTOR--FWS_HHS, Food waste (Tonnes) [Food Waste Sector = Households], ['FOOD_WASTE_SECTOR'], 4, Afghanistan, Country, 4 , Afghanistan, ,, True, 2019, 2019, ,, FWS_HHS, 3109152.67104, Flo at, ,, T, ,, E, Food Waste Index Report 2021 / WESR,, Very Low Confidence, G, A, Published, 2023.Q2.G.01

Node: dcid: <u>dc/o/vrz926bz1mwkc</u> typeOf: dcs:StatVarObservation measurementMethod: dcs:SDG_E_A_G observationAbout: dcs:country/AFG observationDate: 2019 unit: dcs:SDG_T value: 3109152.67104 variableMeasured: dcs:sdg/AG_FOOD_WST.FOOD_WASTE_SECTORFWS_HHS

Node: dcid:<u>SDG_E_A_G</u> typeOf: dcs:SDG_MeasurementMethodEnum description: "SDG Measurement Method: [Nature = Estimated data | Obs Status = Normal value | Reporting Type = Global]" name: "SDG_E_A_G"

Node: dcid:<u>country/AFG</u> typeOf: dcs:Country name: *"Afghanistan"* containedInPlace: dcs:asia unDataCode: "undata-geo:G00000020" unDataLabel: "Afghanistan"

• • •

Node: dcid:<u>SDG_T</u> typeOf: dcs:SDG_UnitOfMeasure name: "*Millions of tonnes*"

Node: dcid:<u>dc/o/vrz926bz1mwkc</u> typeOf: dcs:StatVarObservation measurementMethod: dcs:SDG_E_A_G observationAbout: dcs:country/AFG observationDate: 2019 unit: dcs:SDG_T value: 3109152.67104 variableMeasured: dcs:sdg/AG_FOOD_WST.FOOD_WASTE_SECTOR--FWS_HHS

> Node: dcid:sdg/AG_FOOD_WST.FOOD_WASTE_SECTOR--FWS_HHS typeOf: dcs:StatisticalVariable constraintProperties: dcs:sdg_foodWasteSector measuredProperty: dcs:value memberOf: dcs:dc/g/SDGAGFOODWST_sdgfoodWasteSector name: "Food waste [Food Waste Sector = Households]" populationType: dcs:SDG_AG_FOOD_WST sdg_foodWasteSector: dcs:SDG_FoodWasteSectorEnum_FWS_HHS statType: dcs:measuredValue

Metadata Content Framework (MCF)

Node: dcid:sdg/SI_POV_EMP1. AGE--Y15T24

typeOf: dcs:StatisticalVariable

measuredProperty: dcs:value

name: "Employed population below international poverty line, by sex and age [15 to 24 years old] populationType: dcs:SDG_SI_POV_DAY1

statType: dcs:measuredValue

age: dcs:SDG_AgeEnum_Y15T64

https://browser.datacommons.org/browser/sdg/SI_POV_EMP1.AGE--Y15T24

Goals, Targets, and Indicators are specified UNSD. The remaining sub-hierarchy is auto-generated from the data.

How to specify a new geography?

- Each place needs a unique DCID, but can have arbitrary additional Properties, such as the UN-specific unDataCode and unDataLabel
 - "United States of America"
 - dcid: <u>country/USA</u>
 - unDataCode: undata-geo:G00003340
 - unDataLabel: "United States of America"
 - ...

Each place specifies its containment via the containedInPlace Property

- "United States of America" (dcid: country/USA) containedInPlace "North America" (dcid:northamerica)
- "North America" (dcid:northamerica) containedInPlace "Earth" (dcid:Earth)

Challenge: Make the ongoing maintenance of mappings scalable

- To scale to real-world use cases, automated tools are critical, e.g.:
 - Ontology matching
 - Entity resolution
 - Semantic similarity
 - Automated reasoning
- No single tool will perform equally well on all inputs
- Purely automated mappings often need to be refined by hand or using sophisticated reconciliation approaches
 - Develop tools to help **understand schemas and maintain data mappings** for each source
 - Employ machine learning or AI to recognize patterns and assist in data mappings???

SDMX Representation Maps

SDM /iew So	X Global Reg ource to Target N	listry 1appings			en - Lo X
Source	Туре	Source Reference	Target Type	Target Reference	^
Codelis	t	SDMX:CL_OBS_STATUS(2.2)	Codelist	SDMX:CL_OBS_STATUS(2.1)	
Марр	ed Values				
Pos	Source		Target		
# 4	CL_OBS_STATUS		CL_OBS_STAT	rus	•
1	А		А		
2	В		В		
3	D		D		
4	E		E		
5	F		F		
6	G		G		
7	1		1		
8	к		к		
9	W		w		
10	0		0		
11	М		М		
12	Р		Р		

- Rich and <u>extensible</u> vocabulary for describing many types of individual mappings and sets of mappings
- Includes simple **tabular format** for dissemination of mappings
- Community-driven standard with well-defined governance and collaborative workflows
- Maintained as an open-source project on the mapping-commons GitHub organization (<u>https://mapping-commons.github.io/sssom/spec/</u>)
- Specification available from: https://w3id.org/sssom/
- Many SSSOM are mapped to external vocabularies (e.g., PAV, Dublin Core, ...)

Challenge: Make data pipelines observable and adaptable

- Implement dashboards to visualize ETL flow and track data movement
- Integrate automated validation checks throughout the ETL process
- Set up alerts for any discrepancies or issues in the data processing
- Create flexible **connectors** for various data sources to ease integration.
- Maintain comprehensive documentation on data transformation rules and logic

Data pipelines

Airflow

Source converted to "Proto SDMX"

THE REAL PROPERTY. Thank you. Contraction of the second HEILING W